
CLUSTERING 
Issue: 

The "USArrests" dataset is a collection of data about different characteristics of 
each state in the United States, including murder rate, assault rate, urban 
population percentage, rape rate, and the names of the states.To analyze this 
dataset, we can use various statistical techniques, including principal component 
analysis (PCA), k-means clustering, and hierarchical clustering. 

PCA is a technique used to reduce the dimensionality of a dataset by identifying 
the most important features that capture the majority of the variance in the data. 
In the case of "USArrests" dataset, we can use PCA to identify the principal 
components that explain most of the variation in the dataset. We can then interpret 
these principal components to gain insights into the relationships between the 
different variables in the dataset. 

K-means clustering is a technique used to partition a dataset into k clusters, where 
k is a user-defined parameter. In the case of "USArrests" dataset, we can use k-
means clustering to group the states based on their similarities in terms of the 
different characteristics provided in the dataset. We can then interpret these 
clusters to identify any underlying patterns or relationships between the different 
variables in the dataset. 

Hierarchical clustering is another clustering technique that creates a hierarchy of 
clusters based on the similarity between data points. In the case of "USArrests" 
dataset, we can use hierarchical clustering to identify the different levels of 
clusters and their relationships with each other. We can then interpret these 
clusters to identify any underlying patterns or relationships between the different 
variables in the dataset. 

Overall, by applying these statistical techniques to the "USArrests" dataset, we 
can gain insights into the relationships between the different characteristics of 
each state and identify any underlying patterns or clusters in the data. 

Findings: 

The results of the Principal Component Analysis (PCA) showed that there is a 
strong relationship between serious crimes, such as murder, assault, and rape, and 
the degree of urbanization in the first loading vector. However, this correlation is 
weaker in the second loading vector. Therefore, it can be concluded that these 
crimes tend to occur together in states, but there is little connection between these 
crimes and the urban population. 



Using k-means clustering, it was found that increasing the value of "k" resulted 
in a decrease in "tot.withinss," indicating that the algorithm was successful in 
creating clusters that were more homogeneous and well-separated from each 
other. 

Additionally, applying hierarchical clustering to the data resulted in dendrograms, 
which are tree-like structures. When using complete and average linkage 
methods, the dendrograms were more evenly distributed. This suggests that the 
hierarchical clustering algorithm was able to identify distinct patterns or clusters 
within the data that could be interpreted in a meaningful way. 

 

Discussions: 

The results of the principal component analysis showed that the first principal 
component explains 62.0% of the variance in the data, while the second principal 
component explains 24.7%, and so on. This indicates that the first principal 
component is the most important factor in explaining the variation in the data. 

On the other hand, when applying hierarchical clustering to the data, it was found 
that the dendrograms produced using complete and average linkage methods were 
more balanced than the dendrogram produced using single linkage. This suggests 
that complete and average linkage methods were able to identify distinct patterns 
or clusters within the data that could be interpreted in a meaningful way, while 
the single linkage method failed to do so. 

It is important to note that the choice of linkage method can have a significant 
impact on the results of hierarchical clustering, and researchers should carefully 
consider which method to use based on the nature of the data and their research 
questions. 

 

Appendix A: Method 

Principal Component Analysis (PCA) is a technique that can be used to reduce 
the dimensionality of a dataset by identifying patterns in the data. To perform 
PCA in R, we first compute the mean and variance of the dataset's variables. If 
the variables' mean and variance values differ, we use the prcomp() function to 
perform PCA. This function provides the center, scale, rotation, sdev, and x 
values. The scale's center and length show the variables' mean and standard 
deviation. We can then use the biplot() function to plot the first two principal 



components. We can also determine the variance and the percentage of variance 
explained by each principal component and visualize it using the plot() method. 

To perform k-means clustering in R, we start with a matrix-formatted dataset that 
has been divided into two equal halves. We cluster the data using R's kmeans() 
function and then plot the data, giving each observation a color based on which 
cluster it belongs to. We repeat this procedure with k=3 and note the tot.withinss 
value, which is a metric for the sum of all within-cluster squares. Based on our 
observations, we can make inferences about the effectiveness of the clustering 
algorithm. 

 

Appendix B: Results  

 

 
Fig1 : Biplot for first two principal components 

 

names(USArrests) 
[1] "Murder"   "Assault"  "UrbanPop" "Rape"     
> apply(USArrests,2,mean) 
  Murder  Assault UrbanPop     Rape  



   7.788  170.760   65.540   21.232  
> apply(USArrests,2,var) 
    Murder    Assault   UrbanPop       Rape  
  18.97047 6945.16571  209.51878   87.72916  
> pr.out<- prcomp (USArrests , scale = TRUE) 
> names(pr.out) 
[1] "sdev"     "rotation" "center"   "scale"    "x"        
> pr.out$center 
  Murder  Assault UrbanPop     Rape  
   7.788  170.760   65.540   21.232  
> pr.out$scale 
   Murder   Assault  UrbanPop      Rape  
 4.355510 83.337661 14.474763  9.366385  
> pr.out$rotation 
                PC1        PC2        PC3         PC4 
Murder   -0.5358995  0.4181809 -0.3412327  0.64922780 
Assault  -0.5831836  0.1879856 -0.2681484 -0.74340748 
UrbanPop -0.2781909 -0.8728062 -0.3780158  0.13387773 
Rape     -0.5434321 -0.1673186  0.8177779  0.08902432 
 

 

Fig2: Variance Plots 
#Kmeans clustering 
> set.seed (2) 
> x <- matrix ( rnorm (50 * 2), ncol = 2) 
> x[1:25, 1] <- x[1:25, 1] + 3 
> x[1:25, 2] <- x[1:25, 2] - 4 
> km.out <- kmeans (x, 2, nstart = 20) 
> km.out$cluster 
 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 
[29] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
> par (mfrow = c(1, 2)) 
> plot (x, col = (km.out$cluster + 1) 
+         ,main = "K- Means Clustering Results with K = 2" 
+         ,xlab = "", ylab = "", pch = 20, cex = 2) 
> set.seed (4) 
> km.out <- kmeans (x, 3, nstart = 20) 
> km.out 
K-means clustering with 3 clusters of sizes 17, 23, 10 
 
Cluster means: 
        [,1]        [,2] 
1  3.7789567 -4.56200798 
2 -0.3820397 -0.08740753 
3  2.3001545 -2.69622023 
 
> plot (x, col = (km.out$cluster + 1), 
+       main = "K- Means Clustering Results with K = 3", 
+       xlab = "", ylab = "", pch = 20, cex = 2) 
> set.seed (4) 
> km.out <- kmeans (x, 3, nstart = 1) 
> km.out$tot.withinss 
[1] 104.3319 



> km.out <- kmeans (x, 3, nstart = 20) 
> km.out$tot.withinss 
[1] 97.97927 

 
 

 
Fig3: Plots for K-Means clustering for different k values 

 
> hc.complete <- hclust ( dist (x), method = "complete") 
> hc.average <- hclust ( dist (x), method = "average") 
> hc.single <- hclust ( dist (x), method = "single") 
> par (mfrow = c(1, 3)) 
> plot (hc.complete, main = "Complete Linkage", 
+         xlab = "", sub = "", cex = .9) 
> plot (hc.average , main = "Average Linkage", 
+         xlab = "", sub = "", cex = .9) 
> plot (hc.single, main = "Single Linkage", 
+         xlab = "", sub = "", cex = .9) 
> cutree (hc.complete,2) 
> cutree (hc.complete,2) 
 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 
[29] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
> cutree (hc.average,2) 
 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 
[29] 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 
> cutree (hc.single,2) 
 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 
[29] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
> cutree (hc.single,4) 
 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 3 3 
[29] 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 
> xsc <- scale (x) 
> plot ( hclust ( dist (xsc), method = "complete") 
+          ,main = " Hierarchical Clustering with Scaled Features") 
> x <- matrix ( rnorm (30 * 3), ncol = 3) 
> dd <- as.dist (1 - cor (t(x))) 
> plot ( hclust (dd, method = "complete") 
+          ,main = "Complete Linkage with Correlation - Based Distance " 
+          ,xlab = "", sub = "") 

 
 
 
 
 
 



 
Fig4: Hierarchical clustering Performing complete, average and single linkage 

 
 

 
 

Fig5: Hierarchical clustering with Scaled features 

 

 



Appendix C: Code 

Code for Principal Component Analysis 

states <- row.names(USArrests) 

states 

names(USArrests) 

apply(USArrests,2,mean) 

apply(USArrests,2,var) 

pr.out<- prcomp (USArrests , scale = TRUE) 

names(pr.out) 

pr.out$center 

pr.out$scale 

pr.out$rotation 

dim(pr.out$x) 

biplot(pr.out,scale= 0) 

pr.out$rotation = -pr.out$rotation 

pr.out$x = -pr.out$x 

biplot(pr.out,scale = 0) 

pr.out$sdev 

pr.var <- pr.out$sdev^2 

pr.var 

pve <- pr.var / sum (pr.var) 

pve 

par (mfrow = c(1, 2)) 

plot (pve , xlab = " Principal Component ", ylab = " Proportion of Variance 
Explained ", ylim = c(0, 1) ,type = "b") 

plot ( cumsum (pve), xlab = " Principal Component ",ylab = " Cumulative 
Proportion of Variance Explained ",ylim = c(0, 1), type = "b") 

a <- c(1, 2, 8, -3) 



cumsum (a) 

 

#Code for K-means clustering 

set.seed (2) 

x <- matrix ( rnorm (50 * 2), ncol = 2) 

x[1:25, 1] <- x[1:25, 1] + 3 

x[1:25, 2] <- x[1:25, 2] - 4 

km.out <- kmeans (x, 2, nstart = 20) 

km.out$cluster 

par (mfrow = c(1, 2)) 

plot (x, col = (km.out$cluster + 1)  ,main = "K- Means Clustering Results with K 
= 2",xlab = "", ylab = "", pch = 20, cex = 2) 

set.seed (4) 

km.out <- kmeans (x, 3, nstart = 20) 

km.out 

plot (x, col = (km.out$cluster + 1),main = "K- Means Clustering Results with K 
= 3",xlab = "", ylab = "", pch = 20, cex = 2) 

set.seed (4) 

km.out <- kmeans (x, 3, nstart = 1) 

km.out$tot.withinss 

km.out <- kmeans (x, 3, nstart = 20) 

km.out$tot.withinss 

 

Code for Hierarchical Clustering 

hc.complete <- hclust ( dist (x), method = "complete") 

hc.average <- hclust ( dist (x), method = "average") 

hc.single <- hclust ( dist (x), method = "single") 

par (mfrow = c(1, 3)) 



plot (hc.complete, main = "Complete Linkage",xlab = "", sub = "", cex = .9) 

plot (hc.average , main = "Average Linkage",  xlab = "", sub = "", cex = .9) 

plot (hc.single, main = "Single Linkage", xlab = "", sub = "", cex = .9) 

cutree (hc.complete,2) 

cutree (hc.average,2) 

cutree (hc.single,2) 

cutree (hc.single,4) 

xsc <- scale (x) 

plot ( hclust ( dist (xsc), method = "complete")   ,main = " Hierarchical Clustering 
with Scaled Features") 

x <- matrix ( rnorm (30 * 3), ncol = 3) 

dd <- as.dist (1 - cor (t(x))) 

plot ( hclust (dd, method = "complete") ,main = "Complete Linkage with 
Correlation - Based Distance ",xlab = "", sub = "") 


